

Клапаны обратного потока

Термостатические радиаторные клапаны

с и без предварительной настройки

Engineering GREAT Solutions

Клапаны обратного потока

Термостатические клапаны Heimeier для обратного направления потока могут использоваться в двухтрубных насосных системах отопления в случае ошибочного подключения прямого и обратного трубопроводов. Клапаны могут также устанавливаться на обратные трубопроводы высокорасположенных радиаторов. Это облегчает доступ к термостатической головке.

Ключевые особенности

- Установка на подающий или обратный трубопровод
 Для предотвращения возникновения шума в системе
- V-exact II клапан с предварительной настройкой Для точного гидравлического регулирования
- Модели Eclipse с автоматическим ограничением расхода

для автоматической балансировки системы

Корпус из литьевой бронзы,
 Коррозионная стойкость и
 безопасность

Технические характеристики

Область применения:

Системы отопления

Функция:

Бесступенчатая настройка (V-exact II) Закрытие

Предотвращение возникновения шума в системе с ошибочным подключением подающего и обратного трудопроводов

Диапазон размеров:

DN 10-15

Номинальное давление:

PN 10

Температура:

Макс. рабочая температура: 120°C, с защитным колпачком или приводом 100°C.

Мин. рабочая температура: -10°C

Диапазон расхода Eclipse:

Расход может быть предварительно настроен в следующем диапазоне: 10-150 л/ч.

Заводская настройка 150 л/ч. (Максимально номинальный расход q_{mN} при 10 kPa согласно EN 215: 115 л/ч)

Перепад давления (ΔpV) Eclipse:

Макс. перепад давления: 60 кПа (<30 dB(A)) Мин. перепад давления: 10-100 л/ч = 10 кПа 100-150 л/ч = 15 кПа

Материал:

Корпус клапана: коррозинно-стойкая литьевая бронза Уплотнение: EPDM

Конус клапана: ЕРВМ

Возвратная пружина: Нержавеющая

Вставка клапана: Латунь, PPS Всю верхнюю часть клапана можно заменить с помощью монтажного инструмента HEIMEIER, не сливая теплоноситель из системы.
Шток: Шток из стали Niro

Шток: Шток из стали Niro с уплотнением из двойного уплотнительного кольца. Наружное уплотнительное кольцо можно заменить под давлением (Standard, V-exact II).

Обработка поверхностей:

Корпус клапана и фитинги покрыты никелем.

Маркировка:

ТНЕ, направление потока, DN и II+. Без предварительной настройки: Черный защитный колпачек. Коробка маркирована черной этикеткой. С предварительной настройки: Белый защитный колпачок.

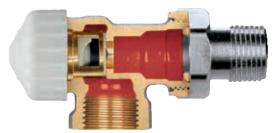
Eclipse: Оранжевый защитный колпачок.

Соединение:

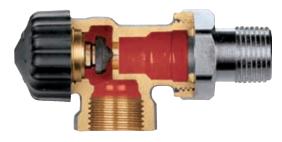
Клапаны могут соединяться со стальными трубами или трубами из медьсодержащих прецизионных сплавов или трубами Verbund при помощи компрессионных фитингов (только клапаны DN 15).

Соединение термостатических головок и приводов:

IMI Heimeier M30x1.5



Конструкция


С ограничителем расхода (Eclipse)

С предварительной настройкой (V-exact II)

Без предварительной настройки

Применение

Термостатические клапаны IMI Heimeier для обратного направления потока могут использоваться в двухтрубных насосных системах отопления в случае ошибочного подключения прямого и обратного трубопроводов (например, при появлении стука в системе). В случае возникновения вопросов по поводу увеличения или уменьшения теплоотдачи радиатора относительно сквозного потока, обращайтесь за информацией к производителю радиаторов.

Клапаны могут устанавливаться в обратные трубопроводы высокорасположенных или высоких радиаторов. Этим облегчается доступ к термостатической головке. Согласно стандартам EnEV и DIN V4701-10, клапаны могут разрабатываться с регулировочной разницей в пределах от 1 К до 2 К, обеспечивая широкий спектр расхода (см. технические характеристики/ диаграммы).

Модель V-exact II оснащена предварительной настройкой, что позволяет выставить необходимое значение расхода теплоносителя через отопительный прибор.

Eclipse

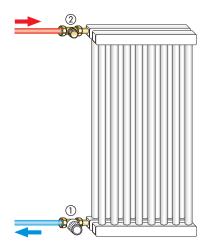
Проектный расход каждого радиатора устанавливается непосредственно на Eclipse. Ограничение расхода осуществляется простой настройкой. После корректировки расход не будет превышен даже в случае увеличения давления из-за изменений нагрузки в системе, например, в результате закрывания клапанов на других радиаторах или во время запуска в утреннее время. Eclipse гарантирует проектный расход.

Шумовые характеристики

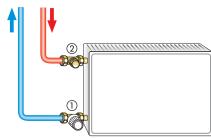
Для обеспечения низкого уровня шума должны быть выполнены следующие условия:

- Опыт показывает, что перепад давлений на термостатических клапанах не должен превышать приблизительно 20 кПа = 200 мбар = 0,2 бар. Если при проектировании системы могут возникнуть более высокие разницы в диапазоне потока средней нагрузки, можно использовать управляющее оборудование на основе перепада давлений, такое как контроллер перепада давлений STAP или перепускные клапаны Hydrolux.
- Массовый расход должен быть правильно отрегулирован.
- Воздух должен быть полностью удален из системы.

Шумовые характеристики Eclipse


Для обеспечения низких шумовых характеристик должны выполняться следующие условия:

- Перепад давления на клапанах Eclipse не должен превышать 60 кПа = 600 мбар = 0,6 бар (<30 dB(A)).
- Правильная регулировка расхода.
- Полное удаление воздуха из системы.

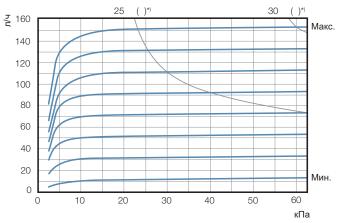

Варианты применения

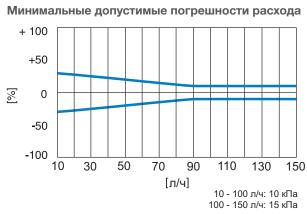
Термостатический клапан в подключении обратного трубопровода

Радиатор комнатный, высокий

- 1. Термостатический клапан для обратного направления потока
- 2. Запорно-регулирующий клапан Regulux/Regutec

Примечание


- Во избежание повреждений и образования накипи в системах водяного отопления, состав теплоносителя должен соответствовать рекомендации 2035 Союза немецких инженеров (VDI).
 - Для промышленных и магистральных теплосетей следует учитывать требования VdTÜV и 1466/AGFW FW 510. Содержащиеся в теплоносителе смазочные вещества, в состав которых входят минеральные масла, могут оказывать существенное отрицательное воздействие на оборудование и приводят к расслоению уплотнений из каучука EPDM.


При использовании безнитритовых антифризов и антикоррозионных составов на основе этиленгликоля необходимо обратить особое внимание на соответствующие данные, содержащиеся в документации производителя, а в частности, на информацию о концентрации и специальных добавках.

 Термостатические клапаны совместимы со всеми термостатическими головками, а также со всеми термо- и электроприводам производства IMI Hydronic Engineering. В целях обеспечения максимальной безопасности необходима соответствующая настройка всех компонентов системы. При использовании приводов других производителей необходимо убедиться в том, что их мощность соответствует требуемой величине.

Технические характеристики – С ограничителем расхода (Eclipse)

*) Значение р-диапазона [хр] макс. 2 К.

Настойка	1	1	I	ı	5	I	- 1	I	ı	10	I	ı	I	I	15
л/ч	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150

Значение р-диапазона [хр] макс. 2 К. Р-диапазон [хр] мокс.1 К до 90 л/ч.

Значение настроек в зависимости от мощности и перепада температур в системе

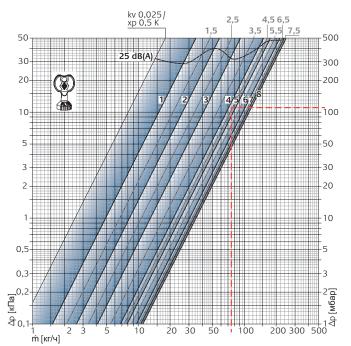
Q [W]	200	250	300	400	200	009	700	800	006	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000	4800	5300	6500	6800
∆t [K]																													
10	2	2	3	3	4	5	6	7	8	9	10	12	14	15															
15	1	1	2	2	3	3	4	5	5	6	7	8	9	10	12	13	14	15											
20	1	1	1	2	2	3	3	3	4	4	5	6	7	8	9	10	10	11	12	13	14	15							
30	1	1	1	1	1	2	2	2	3	3	3	4	5	5	6	6	7	8	8	9	9	10	10	11	12	14	15		
40		1	1	1	1	1	2	2	2	2	3	3	3	4	4	5	5	6	6	7	7	7	8	8	9	10	11	14	15

 Δ р мин. 10 - 100 л/ч = 10 кПа Δ р мин. 100 - 150 л/ч = 15 кПа

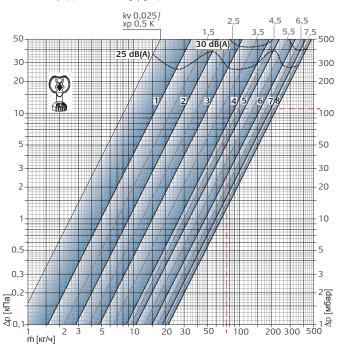
Q = мощность

 Δt = диапазон температур в системе

 Δp = перепад давлений


Пример:

Q = 1000 W, Δt = 15 K Настройка: **6** (\approx 60 л/ч)


Технические характеристики - С предварительной настройкой (V-exact II)

Диаграмма, клапан с термостатической головкой

Значение р-диапазона [хр] 1,0 К

Значение р-диапазона [хр] 2,0 К

Клапан (DN 10/15) с термостатической головкой

			Tov	ная пре	едварит	ельная			вления, при г ∆р [бар]			
		1	2	3	4	5	6	7	8	Термостат. головка	EMO T-TM/NC EMOtec/NC EMO 3 EMOLON	EMO T/NO EMOtec/NO
Р-диапазон хр 1,0 К	Значение Kv	0,049	0,082	0,130	0,215	0,246	0,303	0,335	0,343			
Р-диапазон хр 2,0 К	Значение Kv	0,049	0,090	0,150	0,265	0,330	0,470	0,590	0,670			
	Kvs	0,049	0,102	0,185	0,313	0,420	0,565	0,740	0,860	1,0	3,5	3,5
	Допустимое отклонение расхода ± [%]	20	18	16	14	12	10	10	10			

Коэффициенты Kv/Kvs = м³/ч при падении давлений 1 бар.

Пример расчета

Задача:

Диапазон настройки

Дано:

Мощность Q = 1308 Вт

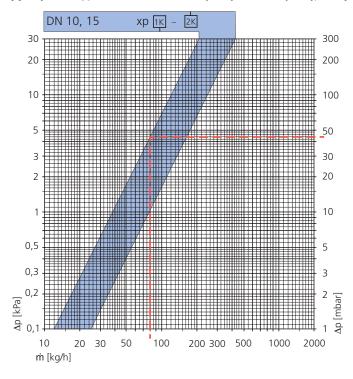
Разница температур $\Delta T = 15 \text{ K (65/50 °C)}$

Потеря давления на термостатическом клапане $\Delta pV = 110$ мбар

Решение:

Массовый расход m = Q / (c \cdot Δ T) = 1308 / (1,163 \cdot 15) = 75 кг/час

Диапазон настройки из диаграммы:


со значением p-диапазона макс. 1,0 \mathbf{K} : 4,5

со значением р-диапазона макс. 2,0 К: 4

Технические характеристики – Без предварительной настройки

Диаграмма для клапанов DN 10 (3/8") - DN 15 (1/2"), с термостатической головкой

Клапан с термостатической головкой	Значе	Кv Значение р-диапазона [K]			Kvs		вления, при · Δр [бар]	
	1,0	1,5	2,0	угловой	проходной	Термостат. головка	EMO T-TM/ NC EMOtec/NC EMO 3 EMOLON	EMO T/NO EMOtec/NO
DN 10 (3/8")	0,38	0,59	0,79	2,00	1,50	1.00	0.50	0.50
DN 15 (1/2")	0,38	0,59	0,79	2,00	2,00	1,00	3,50	3,50

Коэффициенты Kv/Kvs = м³/ч при падении давлений 1 бар.

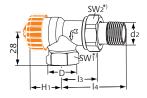
Пример расчета

Задача:

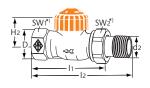
Потеря давления на термостатическом клапане DN 15 со значение р-диапазона 1K

Дано:

Тепловой поток Q = 1395 Вт


Разность температур $\Delta t = 15 \text{ K (65/50°C)}$

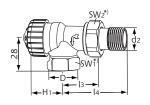
Решение:


Расход воды m = Q / (c \cdot Δt) = 1395 / (1,163 \cdot 15) = 80 кг/час

Потеря давления из диаграммы $\Delta p_{_{V}} = 44$ мбар

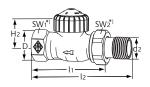
Артикулы изделий – С ограничителем расхода (Eclipse)

Угловая мо	одель						
DN	D	d2	13	14	H1	Диапазон расхода [л/ч]	№ изделия
10 (3/8")	Rp3/8	R3/8	26	52	21,5	10-150	9113-01.000
15 (1/2")	Rp1/2	R1/2	29	58	21,5	10-150	9113-02.000


Проходная модель

DN	D	d2	11	12	H2	Диапазон расхода [л/ч]	№ изделия
10 (3/8")	Rp3/8	R3/8	59	85	21,5	10-150	9114-01.000
15 (1/2")	Rp1/2	R1/2	66	95	21,5	10-150	9114-02.000

*) SW1: DN 10 = 22 MM, DN 15 = 27 MM SW2: DN 10 = 27 MM, DN 15 = 30 MM


Значения Н1 и Н2 - расстояние от оси клапана до края термостатической вставки.

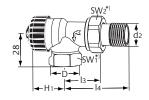
Артикулы изделий – С предварительной настройкой (V-exact II)

Угловая модель

DN	D	d2	13	14	H1	Кv при макс. значении р-диапазона 2К	Kvs	№ изделия
10 (3/8")	Rp3/8	R3/8	26	52	21,5	0,025 - 0,670	0,86	9103-01.000
15 (1/2")	Rp1/2	R1/2	29	58	21,5	0,025 - 0,670	0,86	9103-02.000

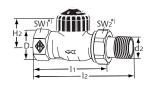
Проходная модель

DN	D	d2	l1	12	H2	Kv при макс. значении	Kvs	№ изделия
						р-диапазона 2К		
10 (3/8")	Rp3/8	R3/8	59	85	21,5	0,025 - 0,670	0,86	9104-01.000
15 (1/2")	Rp1/2	R1/2	66	95	21,5	0,025 - 0,670	0,86	9104-02.000


*) SW1: DN 10 = 22 mm, DN 15 = 27 mm SW2: DN 10 = 27 mm, DN 15 = 30 mm

Значения Н1 и Н2 - расстояние от оси клапана до края термостатической вставки.

 $Kvs = M^3/4$ при перепаде давления в 1 бар и полностью открытом клапане. Kv [xp] макс. 1 K / 2 K = $M^3/4$ при падении давления 1 бар с термостатической головкой.



Артикулы изделий - Без предварительной настройки

Угловая модель

DN	D	d2	13	14	H1	Kv [xp] 1 K / 2 K	Kvs	№ изделия
10 (3/8")	Rp3/8	R3/8	26	52	21,5	0,38 / 0,79	2,00	9101-01.000
15 (1/2")	Rp1/2	R1/2	29	58	21,5	0,38 / 0,79	2,00	9101-02.000

Проходная модель

DN	D	d2	11	12	H2	Kv [xp] 1 K / 2 K	Kvs	№ изделия
10 (3/8")	Rp3/8	R3/8	59	85	21,5	0,38 / 0,79	1,50	9102-01.000
15 (1/2")	Rp1/2	R1/2	66	95	21,5	0,38 / 0,79	2,00	9102-02.000

*) SW1: DN 10 = 22 mm, DN 15 = 27 mm SW2: DN 10 = 27 mm, DN 15 = 30 mm

Значения Н1 и Н2 - расстояние от оси клапана до края термостатической вставки.

 $Kvs = M^3/4$ при перепаде давления в 1 бар и полностью открытом клапане. Kv [xp] макс. 1 K / 2 K = $M^3/4$ при падении давления 1 бар с термостатической головкой.

Аксессуары

Ключ для настройки

Eclipse. Оранжевого цвета.

№ изделия
3030-02 142

Ключ для настройки

V-exact II

№ изделия
1260 00 112

Компрессионный фитинг

для медных и стальных тонкостенных труб согласно DIN EN 1057/10305-1/2. Соединение с внутренней резьбой Rp 3/8-Rp 3/4.

Уплотнение металл-металл. Никелированная латунь.

При толщине стенки трубы 0,8 –1 мм необходимо использовать опорные втулки. Соблюдайте рекомендации изготовителя труб.

	Ø трубы	DN	№ изделия
	12	10 (3/8")	2201-12.351
	14	15 (1/2")	2201-14.351
	15	15 (1/2")	2201-15.351
	16	15 (1/2")	2201-16.351
-	18	20 (3/4")	2201-18.351

Опорная втулка

для медных или стальных тонкостенных труб с толщиной стенки 1 мм. Латунь.

Ø трубы	L	№ изделия
12	25,0	1300-12.170
15	26,0	1300-15.170
16	26,3	1300-16.170
18	26.8	1300-18 170

Компрессионный фитинг

Для многослойных труб согласно DIN 16836.

Соединение с внутренней резьбой Rp1/2.

Никелированная латунь.

Ø	трубы	№ изделия
16	5 x 2	1335-16.351

Двойной соединительный фитинг

для крепления пластиковых, медных, тонкостенных стальных или металлопластиковых труб. Латунный, никелированный.

	L	№ изделия
G3/4 x R1/2	26	1321-12.083

Компрессионный фитинг

для медных и стальных тонкостенных труб согласно DIN EN 1057/10305-1/2. Соединение с наружной резьбой G3/4 согласно DIN EN 16313 (Eurocone). Уплотнение металл-металл. Никелированная латунь.

При толщине стенки трубы 0,8 –1 мм необходимо использовать опорные втулки. Соблюдайте рекомендации изготовителя труб.

Ø трубы	№ изделия
12	3831-12.351
14	3831-14.351
15	3831-15.351
16	3831-16.351
18	3831-18.351

Компрессионный фитинг

для медных и тонкостенных стальных труб согласно DIN EN 1057/10305-1/2. Соединение с наружной резьбой G3/4 согласно DIN EN 16313 (Eurocone). Мягкое уплотнение.

Ø трубы	№ изделия
15	1313-15.351
18	1313-18.351

Компрессионный фитинг

Никелированная латунь.

для пластмассовых труб DIN 4726, ISO 10508.

PE-X: DIN 16892/16893, EN ISO 15875; PB: DIN 16968/16969.

Соединение с наружной резьбой G3/4 согласно DIN EN 16313 (Eurocone). Конусное соединение уплотнительным кольцом.

Никелированная латунь.

Ø трубы	№ изделия
12x1,1	1315-12.351
14x2	1311-14.351
16x1,5	1315-16.351
16x2	1311-16.351
17x2	1311-17.351
18x2	1311-18.351
20x2	1311-20.351

Компрессионный фитинг

для металлопластиковых труб в соответствии с DIN 16836. Соединение с наружной резьбой G3/4 в соответствии с DIN EN 16313 (Евроконус).

Никелированная латунь.

Ø трубы	№ изделия
18x2	1331-18.351

Монтажный инструмент

в комплекте с футляром, торцевым гаечным ключом и сменными уплотнениями для замены термостатических клапанов без дренажа системы (для клапанов DN 10 - DN 20).

	№ изделия
Монтажный инструмент	9721-00.000
Сменные уплотнения	9721-00.514

Измерительные ниппели для монтажного инструмента

Для измерения перепада давления на термостатическом клапане с помощью балансировочного прибора TA-SCOPE.

№ изделия
9790-01.890

Подробный перечень аксессуаров смотрите в каталоге "Аксессуары и запасные части для термостатических радиаторных клапанов".

